1.the 19th term of a.p is equal to 3 times its 6th term if the 9th term of the a.p is 19. Find the first term and it's common difference.
2. If 8 times the 8th term of an a.p is equal to the 12 times the 12th term of a.p then find the 20th term .
3. Explain the reason for the double answer .
4.find a30-a20 for the A. P .5,1,-3,-7........
5.find the number of terms of the a.p 20,16,12,....which when added gives the sum 56. Request for answer as soon as possible....plz ...friends.

2

Answers

2015-05-18T13:26:52+05:30
Let 'a' be the 1st term(a₁) and 'd' the common difference of the A.P.s.

Ans1=> a₉ = 19.
       a+(9-1)d = 19.
       a+8d=19 .....(1)

 Now, a₁₉ = 3×a₆
         a+(19-1)d=3[a+(6-1)d]
         a+18d=3(a+5d)
         simplifying, we get,
         a=3d/2. ......(2)
Putting value of a in (1)
         3d/2 + 8d=19
Solving we get d=2.
Putting d=2 in (1) we get a=3.                                      (ans.)


Ans2=>
         8×a₈=12×a₁₂
         8[a+(8-1)d]=12[a+(12-1)d]
Solving, we get,
          a = -19d.
          a+19d=0            
          a+(20-1)d=0
          a₂₀=0.                                                            (Ans.)


Ans4=>
           Here, a = 5 and d = -4
           a₃₀ = 5+(30-1)(-4)
                = -111.
           a₂₀ = 5+(20-1)(-4)
                = -71.

a₃₀ - a₂₀ = -111-(-71) = -40.                                       (Ans.)       


Ans5=>

       S=n/2[2a+(n-1)d]
      56=n/2[2×20+(n-1)(-4)]
Solving we get, (n-7)(n-4) = 0.  Hence, n= 7 or 4.
Required no of terms = 4.( sum of 5th term to 7th term is 0). (Ans.)


        

  



1 5 1
The Brainliest Answer!
2015-05-22T13:52:35+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
T₁₉ = 3 * T₆        and,      T₉ = 19

T₉ = a + (9-1) d = a + 8 d  =  19      --- (1)
T₆ = a + (6-1) d = a + 5 d
T₁₉ =  a + 18 d

 a + 18 d  =  3 * (a + 5 d)  = 3 a + 15 d
    => 2 a - 3d = 0
     =>  a = 3/2 * d      ---(2)
Solving, (1) and(2)  :  a = 3   and d = 2
===================

8 * T₈  = 12 * T₁₂          =>    2  T₈  = 3 T₁₂
=>  2 (a + 7 d)  = 3 (a + 11 d)
=>  a = - 19 d  --- (1)

T₂₀  = a + 19 d =  0      as (1)
===========================
????
==============
4.        a  = 5          d =  - 4
   T₃₀ - T₂₀
         = a + 29 d - a - 19 d
         = 10 d   =   - 40
===================
5.   Sum  = S = [ 2 a  + (n--1) d  ] * n / 2
                 56 = [ 2 * 20 - 4 n + 4 ] * n / 2
     =>   28 +  n^2 - 11 n  = 0
     =>   n = (11 + - 3)/2 = 7 or 4

  series      20,  16,  12,  8,  4,  0,  -4,  -8,  -12

3 5 3
click on thanks button above
thank a lot sir......:)