If sum of infinite terms of a G.P. is 3 and sum of squares of these terms is also 3 then its first and common ratio is
a) 1,1/2 b)3/2,12 c) 1/2,3/2 d) none

If roots of equation a(b-c)x^2 + b(c-a)x + c(a-b)=0 are equal than a,b,c are in
a) A.P. B)G.P. C) H.P. D)NONE
plzzzzz solve these question

1

Answers

The Brainliest Answer!
2015-06-14T01:09:00+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
A,ar,ar^2,ar^3,.....infinite number of terms

Here r < 1.  So the sum converges.

Sum = a / (1 - r) = 3        =>  a = 3 (1 - r)   ---- (1)

Series with terms being squares of the above series:
   a², a² r², a²r⁴, a² r⁶, a² r⁸ ,...... infinity..

Sum of the terms = a² / ( 1 - r²)  = 3 
                     =>    a² = 3 (1 - r²)    --- (2)

divide (2) by (1):      a = 1 + r    --- (3)

(1) - (3) :    2 - 4 r = 0        =>  r = 1/2 
         hence,  by (3) ,   a = 3/2
==============================

If the Roots of the equation a (b-c) x² + b (c-a) x + c (a-b) = 0  are equal it means that the discriminant is 0.

Discriminant  =   b² (c-a)² - 4*a (b-c) * c (a-b)  = 0  --(1)

If a, b, c are in AP,  then:   b - a = c - b    and  c - a = 2 (c - b)  = 2 (b - a)
Substituting in (1),     b² 2² (c - b)² = 4 a c (b - c)(a - b)
                   =>  b² (c - b) = a c (a - b)

If a, b, c are in GP:  b² = a c
           =>    (c - a)² = 4 (b - c) (a - b)
           =>      c² + a² + 2 ac = 4 a b - 4 b² + 4 b c
            =>   (c + a)²  =  4 b (a + c) - 4 b²
            
If a,b,c are in HP then:  1/a, 1/b , 1/c are in AP.
         =>  1/b - 1/a = 1/c - 1/b
         =>  c (a - b)  = a (b - c)
Substituting in (1): 
           b² (c -a)² = 4 a² (b - c)² 
       =>  b ( c - a) = + 2 a (b - c)  = + 2 c (a - b)     --- (2)
            OR  b (c - a) = - 2 a (b - c)  = - 2 c (a - b)  --- (3)

By (2)      =>  (b + 2 a) c =  3 a b      and  3 b c = a (b +2 c)
        =>  9 a b - 6 a c = a b + 2 a c
        =>  8 a  b = 8 a c         =>  b = c      or    a = 0

By (3):    =>    a b + 2 a c + b c = 0      =>  1/c + 2/b + 1/a = 0
               and  b c + a b - 2 c a = 0      =>  1/a + 1/c - 2/b = 0

Hence,  a,b,c are not in AP, GP or HP.

3 5 3
click on thanks button above please
thankyou sirji
thankyou
select best answer pls