Answers

The Brainliest Answer!
2015-09-25T15:55:05+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Given the relationship between two coordinate systems (x,y,z) and (s,t,v) as
       x = 2 s t  ,    y = s² - t²            z = v

Solving the first two equations, we get:
         s = x/2t    =>      t² = x²/4t² - y       =>       4 t⁴ + 4 t² y - x² = 0

       =>  t² =  [ - y  +-  √(y² + x²)] / 2    = (√(x²+y²) - y) / 2        --- (1)
     Then,  s² = y + t² = (√(x²+y²) + y) / 2                     ------- (2)
 

This is how we calculate the

we differentiate them
     dx = 2 t ds + 2 s dt          ---- (3)
     dy = 2 s ds - 2 t  dt                ---- (4)
     dz = dv

Infinitesimally small distance dS in (x,y,z) is :


Solving the first two equations:
     -dx      2t      2s     -dx
     -dy      2s    -2t      -dy

    ds = (2 t dx + 2 s dy) / (4s² + 4t²)  =  (t dx + s dy) /2(s²+t²)
    dt  = (-2t dy +2s dx) / (4s² +4t²) =   (s dx - t dy)/ 2(s²+t²)

Infinitely small distance in (s,t,v) system is = dS':

(dS')² = (ds)² + (dt)² + (dv)²
     = dv² + [ t²dx²+s²dy²+2st dx dy + s²dx²+t² dy-2st dx dy] /4(t²+s²)²
     = (dv)² + [ (dx)² + (dy)² ] / [4 (s²+t²)]

From (1) and (2) we have  s² + t² = √(x²+y²)

So the scaling factors for linear distances from (x,y,z) to (s,t,v) are given by :
     ds   =   1/ √ √ [4√(x²+y²) ] *  dx    
     dt  =  1/ √ √ [4√(x²+y²) ]  * dy
     dv =  1 *  dz
=========================

Expression for square of the arc length is  = (dS)²
      = (dx)² + (dy)² + (dz)²                use equations (3) and (4)
     =  (dv)² + 4 t² (ds)² + 4s² dt²  + 8 t s  ds dt + 4 s² ds² + 4 t² dt² - 8 s t ds dt
  (dS)²  (dv)² + 4 [ (ds)² + (dt)² ] [s² + t²]              ------ (5)

This is the expression for arc length dS.  Then Integration has to be done for obtaining the length of an arc.

============================
EXAMPLE:

Suppose in 3-dim. x, y, z space we have a complicated curve and we have mapped that to s,t,v vector space.   Let us  say that the curve simplifies in  (s, t, v) space to a straight line segment OP, with O(0,0,0) and P(1,1,1).    Its parametric form is:

      s  = w      t = w      and  v = w
       ds/dw = dt/dw = dv/dw = 1

Using equation 5 we get an expression the the length of the curve in (x,y,z) vector space:

    (dS/dw)² =  (dv/dw)² + 4 (s²+t²) [ (ds/dw)² + (dt/dw)² ]
                 =  1  +  4 * 2 w² * (1 + 1)    = 1 + 16 w²
 
  dS = √(1 + 16 w²)  dw  

Integrate wrt  w  from limits  0 to  w  and then substitute  w = 1  to get the arc length in (x,y,z) space.
      

2 5 2
a lot of thanks sir, please one more question what I have just asked in this website. It's urgent sir, please
click on thanks button above pls ;; ;; select best answer pls