Answers

2015-10-01T22:22:36+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Directrix D :  x/a + y/b = 1    or  bx + ay -ab = 0
Focus F = (a, b)

let  P(u, v) be the point that satisfies that condition that:
     Distance of P from F  = distance of P from D.

(u - a)² + (v - b)² =  (b u + a v - a b)² / (b² + a²)
[ u²+v²+a²+b² - 2a u - 2v b] * (a²+b²) = b²u²+a²v²+a²b²+ 2 ab uv -2 a²vb - 2aub²

u²a² + b²v² + a⁴+a²b²+b⁴ - 2a³ u - 2aub² - 2va²b -2vb³ - 2 abuv + 2a²b v + 2ab² u = 0
a² u² + b² v² -2ab u v - 2u a³ -2 v b³ + (a⁴+b⁴ +a² b²)  = 0
replace  u and v by  x and y:
 
a² x² + b² y² - 2 ab xy - 2a³ x - 2b³ y + (a⁴ +b⁴ +a²b²) = 0

you can find the axis of the parabola: as it is perpendicular to the directrix.  so:
     ax - b y = c       
find c  by  knowing that (a, b)  focus lies on the axis.
     so  axis:  a x - b y = a² - b²

 so  Parabola is:  (ax - by - a²+b²)² = 2a²b² ( x/a + y/b - 3/2)
  
1 5 1
click on thanks button above ;;;;select best answer pls