Free help with homework

Why join Brainly?

  • ask questions about your assignment
  • get answers with explanations
  • find similar questions



This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Given complex number is = 3  + 4 i.
The general way of obtaining roots for complex numbers is to convert the number in polar coordinates in the complex number space.  then obtain the root and then convert back in to Cartesian space type of representation.

    Let Cos A = 3/5  and Sin A  = 4/5   =>  A = 53.13°

Let\ Z=3+4i=5[ \frac{3}{5} + i\ \frac{4}{5}]\\\\= 5 * [CosA+ i\ SinA ]\\\\=5*[Cos(2n\pi+A)+i\ Sin(2n\pi+A) ]\\\\=5*e^{i\ A}=5*e^{i\ (2n\pi\ +A)}\\\\Z^{\frac{1}{7}}=5^{\frac{1}{7}}e^{\frac{1}{7}(2n\pi+A)i}\\\\=5^{\frac{1}{7}}*[Cos\frac{(2n\pi+A)}{7}+i\ Sin\frac{(2n\pi+A)}{7}]

Substitute n =0, 1, 2, 3, 4, 5, and 6  to get  the 7 solutions.

z_0=5^{\frac{1}{7}}*[Cos\ 7.59^0+i\ Sin\ 7.59^0]\\z_1=5^{\frac{1}{7}}*[Cos\ 59.019^0+i\ Sin\ 59.019^0]\\z_2=5^{\frac{1}{7}}*[Cos\ 110.45^0+i\ Sin\ 110.45^0]\\z_3=5^{\frac{1}{7}}*[Cos\ 161.87^0+i\ Sin\ 161.87^0]\\and\ so\ on...

2 5 2
click on thanks button above pls;;select best answer
The Brain
  • The Brain
  • Helper
Not sure about the answer?
Learn more with Brainly!
Having trouble with your homework?
Get free help!
  • 80% of questions are answered in under 10 minutes
  • Answers come with explanations, so that you can learn
  • Answer quality is ensured by our experts