Free help with homework

Why join Brainly?

  • ask questions about your assignment
  • get answers with explanations
  • find similar questions


The Brainliest Answer!

This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
 This was tough.  Perhaps there is a simpler method for this..I did this as follows...
As the power of terms in the numerator is higher than those in the denominator, First find the partial fractions.  Then integrate.

f(x)=\frac{sin^4x+cos^4x}{sin^3x+cos^3x}=\frac{(sin^2x+cos^2x)^2-2Sin^2xcos^2x}{(sinx+cosx)(sin^2x-sinx\ cosx+cos^2x)}\\\\=\frac{1-sin^22x/2}{(sinx+cosx)(1-sin2x/2)}=\frac{2-sin^22x}{(sinx+cosx)(2-sin2x)}\\\\=\frac{(2+sin2x)(2-sin2x)-2}{(sinx+cosx)(2-sin2x)}\\\\=\frac{2+sin2x}{sinx+cosx}-\frac{2}{(sinx+cosx)(2-sin2x)}\\\\f(x)= \frac{1+(sinx+cosx)^2}{(sinx+cosx)}-\frac{1}{\sqrt2sin(\frac{\pi}{4}+x)(1-sinx\ cosx)}\\\\

let  (π/4 + x) = y
 we use the identities as below:
       cos x + sin x = √2 Sin (π/4 +x)
       cos x - sin x = √2 Sin (π/4 - x)  = √2 Cos (π/4 + x)
      (cos x  - sin x)² = 2 (1 - Sin² y)

f(x) = \frac{1}{\sqrt2}cosec(\frac{\pi}{4}+x)+\sqrt2Sin(\frac{\pi}{4}+x)-\frac{2}{\sqrt2Sin(\frac{\pi}{4}+x)[1+(sinx-cosx)^2]}\\\\=\frac{1}{\sqrt2}cosec\ y+\sqrt2\ Sin\ y-\frac{\sqrt2}{Sin\ y [1+2Sin^2(\frac{\pi}{2}-y)]}\\\\=\frac{1}{\sqrt2}cosec\ y+\sqrt2\ Sin\ y-\frac{\sqrt2}{Sin y *(3-2Sin^2y)}\\\\=\frac{1}{\sqrt2}cosec\ y+\sqrt2\ Sin\ y-\frac{\sqrt2}{3Sin y}-\frac{2\sqrt2siny}{3(3-2Sin^2y)}\\\\f(x) = \frac{1}{3\sqrt2}cosec\ y+\sqrt2sin\ y+\frac{-2\sqrt2 siny}{3*(1+(\sqrt2Cosy)^2)}\\\\

Now integrate the expression easily now.   The answer is :

I=-\frac{1}{3\sqrt2}Ln|Cosec\ y+Cot\ y |-\sqrt2\ Cos\ y+\frac{2}{3}Tan^{-1}(\sqrt2*Cosy),\\\\where\ y=\frac{\pi}{4}+x\\\\\I=\frac{1}{3\sqrt2}\ Ln | tan(\frac{\pi}{8} + \frac{x}{2})| - cos x + sin x + \frac{2}{3}\ Tan^{-1}(Cos x - Sin x)

Now you can verify this answer by differentiating and adding the terms.

I hope that is understood with not much difficulty.  It seems a bit lengthy and tough. 
3 5 3
click on thanks button above ;; select best answer
The Brain
  • The Brain
  • Helper
Not sure about the answer?
Learn more with Brainly!
Having trouble with your homework?
Get free help!
  • 80% of questions are answered in under 10 minutes
  • Answers come with explanations, so that you can learn
  • Answer quality is ensured by our experts