Answers

2016-03-18T17:09:32+05:30
This problem can be consider as a set of linear equations.

a, b and c earn 300.
i.e,    
        a + b + c = 300  -----------(i)
a and c earn together 188.
i.e,
       a + c = 188  -----------------(ii)
b and c earn together 152.
i.e,
       b + c = 152  -----------------(iii)
from equation (i) and (ii)
    (a + c) + b = 300
or, 188 + b = 300
or, b = 300 - 188 
or, b = 112
then,
     c =  152 -b
or, c = 152 - 112
or, c = 40
Therefore only c can earn up to 40.
0
2016-03-19T15:45:49+05:30