Answers

2016-03-20T09:46:49+05:30
Construction: join OC and OA OA = OC In ΔAQO OQ ⊥ AB ∴AQ = 1/2 AB AQ = 8 cm OQ = 6cm (given) AQ^2 + OQ^2 = OA^2 8^2 + 6^2 = OA^2 64 + 36 = OA^2 100 = OA^2 OA = √100 OA = 10 cm ∴OC = 10 cm ( OA = OC = radius) In ΔCOP CD⊥OP ∴CP= 1/2 CD CP= 6cm CO = 10cm CP^2 + PO^2 = CO^2 6^2 + PO^2 = 10^2 PO^2 = 10^2 - 6^2 PO^2 = 100 - 36 PO^2 =64 PO = √64 PO = 8 cm ∴distance of CD from center O = 8cm
0