Answers

2016-04-12T14:38:44+05:30

dimensions of room length 30 m , breadth 24 m and height 12
 \sqrt{2} m height .
The diagonal of the base =   \sqrt{30 ^{2}+24^{2} }
                                            = 38.418 m
Longest diagonal =  \sqrt{38.418 ^{2}+(12\sqrt{2})^{2} }
                              = 42 m
Therefore the longest iron rod that can be placed = 42 m

0
You people please correct your answer
Still it is incorrect
Hello MADHANSCTS Did you understand the trick?
thanq
Welcome
2016-04-12T14:45:36+05:30
Given,
dimensions are length =30m
                         breadth = 24 m
                         height  = 12√2 m
in the diagram green line = 38.4 m
                                            ( by pythagoras theorem , green line = √(24² + 30²)
                                                                                                       =√(576 + 900)
                                                                                                      = √1476
                                                                                                      = 38.4 m )
now, red line = (12√2)² + (38.4)²
                     =√( 288 + 1474.56)
                     = √1762.56
                    = 41.98 m
therefore, the length of longest iron rod that can be placed in the room = 42 m (nearly 41.98 m) 



0
Please correct the answer.
purva............now ok?
brainliest pleaseeeeeeeeee,,,,,,,,,,,,,,,,,,,,needed
There's one small mistake. We took root of 1476 as 38.4 m. Then while squaring 38.4m, you can directly take 1476 instead of 1474.56.
So the final answer will be exactly 42m and not approx 42 m