Answers

2016-04-28T20:43:52+05:30
Solution :
By Euclid's division Lemma on 92690 and 7378

For every point of integers a and b there exist unique integer q and r such that a = bq + r  
 where 0   r < b 
 ​So here  and a > b

a = 92690 And b = 7378 ,So that

92690 = 7378  ×  13 + 4154

7378 = 4154  × 1 + 3224

4154 = 3224  × 1 + 930

3224 = 930  ×  3 +  434

934 = 434  × 2 + 62

434 = 62  ×  7 + 0

Here r = 0 So H.C.F. of ​92690 and 7378 is 62 

Now apply Euclid division lemma on 62 and 7161

Here a = 7161 and b = 62 ,So that a> b

7161 = 62 ​ ×  115 + 31

62 = 31 ​ ×   2  + 0

Here  r = 0 , So h.C.F. of ​62 and 7161 is 31 .

∴  H.C.F. of ​​92690 , 7378 ​and 7161  is = 31.
0