Free help with homework

Why join Brainly?

  • ask questions about your assignment
  • get answers with explanations
  • find similar questions


  • Rio
  • Ambitious
They actually do. It's just that the mass deficit creates the nuclear binding energy (or nuclear glue) through residual strong interaction (strong force) that overcomes the coulomb force that's trying to push the nucleus apart and keeps it together. The electrostatic repulsion between protons doesn't just disappear when nucleons are fused together to make heavier atomic nuclei.
We can see the electrostatic force pushing atomic nuclei apart as we look at the top of the periodic table. When we synthesize heavier and heavier elements in the physics lab, they are more and more reluctant to "stay together" and stabilize. And we finally reach a point where we just can't force a super heavy nucleus to even begin to stick together. Not even for the tiniest fraction of a second.
Because they are positively charged and like charges repel each other.
0 0 0

This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Proton repel each other.
But neutrons that are neutrally charged occupies the space between two protons and avoids repelling of protons.
0 0 0
The Brain
  • The Brain
  • Helper
Not sure about the answer?
Learn more with Brainly!
Having trouble with your homework?
Get free help!
  • 80% of questions are answered in under 10 minutes
  • Answers come with explanations, so that you can learn
  • Answer quality is ensured by our experts