Free help with homework

Why join Brainly?

  • ask questions about your assignment
  • get answers with explanations
  • find similar questions


(1) Let ABC be the equilateral triangle with base BC and all sides AB , BC, CA each equal to a. Draw perpendicular to base BC from A to meet BC at point D. Then D bisects  BC such that BD = DC.                                Now to find height of triangle ABC:-AD² = AC² - DC² = a² - (a/2)² = (3/4)a².      Or height AD = √[(3/4)a²] = [(√3)/2)] x a.                                      Area of triangle ABC = (1/2)xHeight x Base                                                            = (1/2)xADxBC = (1/2)[(√3/2)a]xa = (√3/4)a²                                                     (2) using formula Area of a triangle = √[s(s-a)(s-b)(s-c)] where a, b, c are three sides of a triangle and s = (a+b+c)/2.                                               For equilateral triangle, s = (3a/2), s-a = s-b = s-c = (3a/2) - a = a/2.                Hence area = √[(3a/2)(a/2)³] = [(√3)/4]xa²                              
0 0 0
The Brain
  • The Brain
  • Helper
Not sure about the answer?
Learn more with Brainly!
Having trouble with your homework?
Get free help!
  • 80% of questions are answered in under 10 minutes
  • Answers come with explanations, so that you can learn
  • Answer quality is ensured by our experts