Answers

2015-02-21T13:39:30+05:30
The modulus sign in (|2-x|/x-2) can be simplified as
When x>=0, (|2-x|/x-2) = (2-x)/(x-2) = -1
When  x<0, (|2-x|/x-2) = (x-2)/(x-2) = 1
Thus, (|2-x|/x-2) >= 0 only when x<0.
Therefore, (|2-x|/x-2) >= 0 is true for x ∈ (-∞, 0)
1 3 1
The Brainliest Answer!
2015-02-21T18:58:46+05:30
It can be simplified as
When x>=0, (|2-x|/x-2) = (2-x)/(x-2) = -1
When  x<0, (|2-x|/x-2) = (x-2)/(x-2) = 1
Thus, (|2-x|/x-2) >= 0 only when x<0.
Therefore, (|2-x|/x-2) >= 0 is true for x ∈ (-∞, 0),,,,,,,,,,,,,,,
2 4 2