Answers

2015-03-25T22:58:32+05:30
L = 25 CSA = 550 πRL = 550 22/7*R*25 = 550 R = 7 L^2 = H^2 + R^2 25^2 = H^2 + 7^2 625 = H^2 + 49 H^2 = 576 H = 24 V = 1/3πR^2H V = 1/3*22/7*7*7*24 V = 22*7*8 V = 1232
0
2015-03-25T23:11:01+05:30
It is given that:-
Slant Height(l) = 25 cm and Curved Surface area of cone =  550 m^{2}
Let Radius of cone be r and height be h
Curved Surface area of cone =  \pirl =  550 m^{2}
 \pir(25) =  550 m^{2}
r=  550 m^{2} / 25 \pi
r = (550/22*25) *7 cm
r= 7 cm
Therefore radius of cone is 7 cm.
By pythagoras theorem, we have  l^{2} =   r^{2} +  h^{2}
=> 25^{2} =   7^{2} +  h^{2}
 h^{2} = 625- 49 =  \sqrt{576} = 24   cm
Therefor, Height of the cone is 24 cm
Volume of cone = 1/3 \pi  r^{2} h = 1/3 *22/7 *7 49 * 24
Volume = 1232 cm^{3}



0