Answers

2015-04-16T00:44:31+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
The integral:

I= \int\limits^{}_{} {Sin^4x\ Cos^4x} \, dx\\\\=\frac{1}{2^4}\int\limits^{}_{} {Sin^42x} \, dx\\\\=\frac{1}{2^4}\int\limits^{}_{} {(Sin^22x)^2} \, dx\\\\=\frac{1}{2^4}\frac{1}{2^2}\int\limits^{}_{} {(1-Cos4x)^2} \, dx\\\\=\frac{1}{2^6}\int\limits^{}_{} {(1+Cos^24x-2\ Cos4x)} \, dx\\\\=\frac{1}{2^6}\int\limits^{}_{} {[1+\frac{1}{2}(1+Cos8x)-2\ Cos4x]} \, dx\\\\=\frac{1}{2^6} \int\limits^{}_{} {\frac{3}{2}} \, dx +\frac{1}{2^7} \int\limits^{}_{} {Cos8x} \, dx -\frac{1}{2^5} \int\limits^{}_{} {Cos4x} \, dx

I=\frac{3}{2^7}x+\frac{1}{2^{10}}Sin8x-\frac{1}{2^7}Sin4x+K

there could be other ways. this is one.

========================
Another way:

we know that  Sin 3x = 3 Sin x - 4 SIn³ x
=>    Sin x Sin 3x = 3 Sin²x - 4 Sin⁴ x
=>    1/2 (Cos 2x - Cos 4x) = 3/2 (1-Cos2x) - 4 Sin⁴ x
=>  Sin⁴ x = 1/8 [ 3 - 3 Cos 2x + Cos 4x - Cos 2x ]
=>  Sin⁴ 2x = 1/8 [ 3 - 4 Cos 4x + Cos 8x ]

I= \int\limits^{}_{} {Sin^4x\ Cos^4x} \, dx\\\\=\frac{1}{2^4}\int\limits^{}_{} {Sin^42x} \, dx\\\\=\frac{1}{2^7}\int\limits^{}_{} {[ 3 - 4 Cos4x + Cos 8x ] } \, dx\\\\=\frac{3}{2^7}x-\frac{1}{2^7}Sin4x+\frac{1}{2^{10}}Sin8x+K

This is simpler, if you remember formula for sin 3x or sin 4x.

1 5 1