Free help with homework

Why join Brainly?

  • ask questions about your assignment
  • get answers with explanations
  • find similar questions
If p(x) is any polynomial of degree greater than or equal to 1 and p(x) is divided by the linear polynomial x-a,then the remainder is p(a).


The Remainder Theorem is useful for evaluating polynomials at a given value of x, though it might not seem so, at least at first blush. This is because the tool is presented as a theorem with a proof, and you probably don't feel ready for proofs at this stage in your studies. Fortunately, you don't "have" to understand the proof of the Theorem; you just need to understand how to use the Theorem.

The Remainder Theorem starts with an unnamed polynomial p(x), where "p(x)" just means "some polynomial p whose variable is x". Then the Theorem talks about dividing that polynomial by some linear factor x – a, where a is just some number. Then, as a result of the long polynomial division, you end up with some polynomial answer q(x) (the "q" standing for "the quotient polynomial") and some polynomial remainder r(x).
1 5 1
Remainder theorem is used to evaluate polynomials such as x for a given value.
1 5 1
i answered ur question say thank you.
The Brain
  • The Brain
  • Helper
Not sure about the answer?
Learn more with Brainly!
Having trouble with your homework?
Get free help!
  • 80% of questions are answered in under 10 minutes
  • Answers come with explanations, so that you can learn
  • Answer quality is ensured by our experts