Answers

2015-04-22T12:49:21+05:30
Consider the discriminant of quadratic  x^2-4x+3=0
D=b^2-4ac=(-4)^2-4(1)(3)=4>0
So there are 2 real solutions to x^2-4x+3=0.

Consequently there will be 4 real solutions to |x|^2-4|x|+3=0 as both x and -x satisfy this equation whenever x is a solution to x^2-4x+3=0.
0
2015-04-22T13:06:00+05:30
X²-4x+3=0
compare with
ax²+bx+c=0
a=1 ,b=-4 and C=3
apply formula
-b+-√b²-4ac    = roots of quadratic equation
    2a
4+-√16-4×1×3       ⇒    4+-√4    ⇒4+-2                                 
        2                            2            2
x=3,1
option c and d are correct






0