# If E,F,G AND H ARE RESPECTIVELY THE MID POINT OF THE SIDES OF A PARALELLOGRAM ABCD SHOW THAT ar(EFGH) = HALF OF ar(ABCD)

1
by vasuChauhan

2015-05-10T11:18:27+05:30

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
GIVEN :-

⇒ E,F,G and H are respectively the mid points of the sides of a parallelogram ABCD.

CONSTRUCTION ;-

⇒ Draw a line HF which should be parallel to CD and AB.

TO PROVE :-

⇒ Ar. ( EFGH ) = Half of . Ar ( ABCD )

PROOF :-

⇒ We know that  AB is parallel to HF, so we can say that ,

ABHF is a parallelogram ( opp. sides of a parallelogram is parallel and                                                     equal)

⇒ Now in , Parallelogram ABHF lies and Δ EFH lies on the same base HF and between same parallels AB and HF.

Hence ,

Ar.( EFH )  =  1 / 2  ar  ( ABFH )

⇒         ( Equation - 1 )

⇒ Also, HF is parallel and equal to DC

So

,DCFH is a parallelogram ( opp.sides of a parallelogram are equal and                                                 parallel )

⇒Also ,we know that Parallelogram DCFH and Triangle GFH lies on the same base HF and between same parallels DC and HF.

Hence,

Ar.  ( GFH )  =  1 / 2 Ar. ( DCFH )

⇒ { Equation - 2  }

FROM EQUATION 1 AND 2 WE GET ,

⇒Ar  .( EFH )  +   Ar.  ( GFH )  =  1 / 2  Ar. ( ABFH )  +  1 / 2  Ar .( DCFH )

⇒Ar.  ( EFGH )                       = 1 / 2 (  Ar. ( ABFH ) +  Ar. ( DCFH )

⇒Ar .  ( EFGH )                       = 1 / 2  ( Ar.( ABCD )

⇒Ar.   ( EFGH )                       = 1 / 2 Ar (ABCD)

Therefore it is proved that ,

Ar.   ( EFGH )            = 1 / 2 Ar (ABCD)