The Probability that atleast one of the two
5
Independent events occur is 0.5. Probability that
first event occurs but not the second is (3/25).
Also the probability that the second event occurs
but not the first is (8/25). Find the probability
that none of the two event occurs

1

Answers

2015-05-16T19:40:50+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Let A and B be the independent events.  They are not exclusive.  Their intersection need not be a null set or null event.    ~A  and ~B are the events when A and B do not occur respectively.

probability that at least one of A or B occur = P (A  U  B) =  1/2

Probability that none of the two events occurs =    P(~A)   AND   P(~B) 
       =  1  -  P(A U B)
        = 1 -  1/2     = 1/2

It is simple.  when none of the events occurs,  it is the compliment of at least one of the events occurs.

===============================
   P (A - B ) = Probability that A occurs but not B
               = P (A) - P(A Π B)
               = probability of A  -  probability of intersection of A and B
  P(A) - P(A Π B) = 3/25

  similarly,  P(B)  -  P(A Π B) = 8/25

we know that
       P(A U B)  =  P (A)  +  [  P(B)  -  P(A Π B) ]
    =>    1/2 = P (A)  + 8/25
    =>  P(A) = 1/2 - 8/25 = 9/25

  Similarly,   P(A U B)  = P(B)  +  [ P(A) - P(A Π B) ]
           =>            1/2  = P(B)  + 3/25
          =>        P(B)  = 1/2 - 3/25 = 19/25

=>  P(A) + P(B) = 28/25
=>  P( A Π B)  =  P (A ) + P(B) - P(A U B)  =  9/25 + 19/25 - 1/2
                     = 31/50
=>  P(~A) = 1 - P(A) = 1 - 9/25 = 16/25
 =>  P(~B) = 1 - P(B) = 1 - 19/25 = 6/25

1 5 1
please click on thanks blue button above.