# If sin (A+¢) / cos (B+C) = sin (B+¢)/ cos (C+A) = sin (C+¢)/ cos (A+B) = k then k = ? 1) k = +-2 2) k= +-1/2 3) k= 0 4) k= +-1

1

2015-05-18T12:38:36+05:30

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Sin (A + c) / Cos (B+C)  =  Sin (B+c) / Cos (C+A)  =  Sin (C + c) / Cos (A+B)  = k

Sin A Cos c + Cos A Sin c   =   k Cos (B+C)    --- (1)
Sin B Cos c + Cos B Sin c   =   k Cos (A+ C)    --- (2)
Sin C Cos c + Cos C Sin c   =   k Cos (A + B)     --- (3)

Let us find the value of Cos c and Sin c  from  (1) and (2).

(1) * Sin B  - (2) * Sin A
=>  Sin c Sin (B - A)  =  k [ Sin B Cos (B + C) - Sin A Cos (A + C) ]
=>                      =  k/2 * [ -Sin C + Sin (2B+C) + Sin C - Sin (2A+C) ]
= k/2 * [ - Sin (2A+C)  +  Sin (2B +C) ]
= k * Sin (B - A) Cos(A+B+C)

=>        Sin c =  k Cos(A+B+C) ,      if  A ≠  B  or  A-B ≠ 2π n      --- (4)

Now from (1),
Sin A Cos c  = k [ Cos (B+C) - Cos A Cos (A+B+C) ]
=  k [ Cos (B+C) -  Cos²A Cos (B+C) + Cos A Sin A Sin(B+C) ]
=  k [ Sin² A  Cos(B+C)  + Sin A Cos A Sin (B+C)

=>  Cos c =  k [ Sin A Cos (B+C) + Cos A Sin (B+C) ]      , if A ≠ 2 π n  or 0
=>  Cos c  =  k Sin (A+B+C)            --- (5)

we know that  Sin² c + Cos² c = 1
=> 1 =  k² [ Cos² (A+B+C) + Sin²(A+B+C) ]  = k²

=>  k = +1  or -1

please click on thanks blue button above