CLASS X MATHS...
1.If α and β are zeroes of the polynomial x²-2x-15 then form a quadratic polynomial whose zeroes 2α and 2β.
2.If the sum of the zeroes of the polynomial f(t)=kt²+2t+3k is equal to the product then the value of k is________?
3.Find the value of a for which (x-a) is a factor of f(x) =-x³+ax²+3x+9.
4.If x-a/b+a + x-b/c+a + x-c/a+b = 3 then the value of x is______?

1

Answers

2015-06-03T08:21:59+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
1)      α+β = 2            αβ = -15
       2α+ 2β = 4        4αβ = - 60
             x² - 4 x - 60
2)  - 2 / k =  3k/k            =>  k = -2/3

3)   f(a) = - a³ + a a² + 3a + 9 =  3 a + 9 = 0    => a = -3
              
4)  
\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=3\\\\\frac{x-a}{b+c}+\frac{x-b}{c+a}=3-\frac{x-c}{a+b}\\\\\frac{xc+ax-ac-a^2+xb+xc-bc-b^2}{(b+c)(a+c)}=\frac{3a+3b-x+c}{a+b}\\\\\frac{x(a+b+2c)-(a^2+b^2+ac+bc)}{ab+ac+bc+c^2}=\frac{3a+3b+c-x}{a+b}

(a+b)*[x(a+b+2c)-(a^2+b^2+ac+bc)]\\.\
 \ \ \ \ = (ab+ac+bc+c^2) * 
(3a+3b+c-x)\\\\x[(a+b)(a+b+2c)+(ab+ac+bc+c^2)]=\\.\ \ \ \ (ab+ac+bc+c^2)
 * (3a+3b+c)+(a+b)(a^2+b^2+ac+bc)\\\\x[a^2+3ab+b^2+3ac+3bc+c^2]

.\
 \ \ \ \ =(3a^2b+3a^2c+7abc+4ac^2+3ab^2+3b^2c+4bc^2+c^3)\\.\ \ \ \ \ \ \
 \ 
+a^3+ab^2+a^2c+abc+a^2b+b^3+abc+b^2c\\\\x[a^2+3ab+b^2+3ac+3bc+c^2]\\.\ \
 \ \ 
=a^3+b^3+c^3+9abc+4a^2b+4a^2c+4ac^2+4ab^2+4b^2c+4bc^2\\\\x=\frac{a^3+b^3+c^3+9abc+4a^2b+4a^2c+4ac^2+4ab^2+4b^2c+4bc^2}{a^2+3ab+b^2+3ac+3bc+c^2}

x=\frac{(a+b+c)^3+3abc+ab(a+b)+ac(a+c)+bc(b+c)}{(a+b+c)^2+(ab+bc+ca)}
1 5 1