# If a²=b+c,b²=c+a and c²=a+b,then the value of (1/1+a)+(1/1+b)+(1/1+c) is

2
by monikagrewal455

2015-06-03T07:16:32+05:30

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
A² = b + c
b² = c + a
c² = a + b

a² - b² = b - a      =>  (a - b) (a + b) = b - a
=>  a + b  = -1    or  a = b

1)  a + b ≠ - 1      as  c²  is not negative, if c is a real number.
a = b  =>  c² = 2 a
similarly, b = c    =>  a² = 2 b            (as  b+c ≠ -1, as a² is non negative)
and  c = a =>  b² = 2 a

so we get a = b = c = 2

click on thanks button above please
• Brainly User
2015-06-03T12:21:18+05:30
(1/1+a)+(1/1+b) +(1/1+c)  take LCm 1/1+a+1/1+b+1/+1/1+c = {(b+1)(c+1)+(c+1)(a+1)+(a+1)(b+1)}/(a+1)(b+1)(c+1)
solve the equation
{bc+b+c+1+ac+c+a+1+ab+a+b+1}/(ab+b+a+1)(c+1)
(a+a+b+b+c+c+ab+bc+ca) /(ab+b+1+a)(c+1)
we know that
a
²=b+c  , b²=c+a , c²=a+b
{(b+c)+(b+c) + (a+a)}/(ab+1+(b+c))(c+1)
{a²+a²+2a }/{abc+c+c(b+c)+ab+1+(b+c)}
2a(a+1)/abc+c+c(a²)+ab+1+(a²)
2a(a+1)/abc+c+a²c+ab+1+a²
2a(a+1)/abc+ c(a²+1) +a(b+a)+1
2a(a+1)/abc+c²(a+1)+ac²
2a(a+1)/abc+ac²+c²+ac²
2a(a+1)/abc+c²(a+1+a)
2a(a+1)/abc+c²(2a+1)
2a(a+1)/c(ab+c(2a+1)
2a(a+1)/c(ab+2ac+c)
2a(a+1)/c(ab+ac+ac+c)
2a(a+1)/c(a(b+c)+c(a+1)
2a(a+1)/c(a(a²)+c(a+1)
2a(a+1)/c(a³+ac+c) by solving this we get
2a(a+1)/2a(a+1) = 1