Answers

2015-06-20T16:48:14+05:30
Let the work done by 1 man in 1 day be 1/x and let the work done by 1 woman in 1 day be 1/y.
⇒By the condition,
 \frac{5}{x} +  \frac{2}{y}=  \frac{1}{4}
⇒4xy *  \frac{5}{x} + 4xy*  \frac{2}{y} =4xy* \frac{1}{4}
⇒20y+8x=xy........(1)
and,
 \frac{6}{x} +  \frac{3}{y} =  \frac{1}{3}
⇒3xy *  \frac{6}{x} + 3xy *  \frac{3}{y} =3xy * \frac{1}{3}
⇒18y+9x=xy
 substituting xy as 20y+8x we get:
18y+ 9x=20y+8x
⇒x=2y.
Now we have:
 \frac{5}{2y} +  \frac{2}{y} =  \frac{1}{4}
⇒Multiplying each term of the equation with 4y (LCM) we get:
10+8=y
y=18 , x=36.
Solution: 1/18 + 1/36
=3/36 's reciprocal=12.
Ans:The required no of days is 12.
2 5 2
no not give him
See , there's an enemity developing between us
yes
so, will u be my friend
okk