Answers

2015-09-25T14:11:03+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
I have done the solution in two ways.  One by deriving the equation and another by assuming the form of the solution.


   We have a system oscillating in a SHM with an characteristic angular frequency of w₀.  In the system suppose there is a damping force externally acting on the mass m that oscillates.  The damping force is directly proportional to the velocity and opposite to it.

   Suppose we have a spring with a constant k with a mass m.  It is present in a thick gas or  fluid, offering a small resistance to the movement.  Let b be the small damping factor.

Equation of motion then is :
         m d² x / dt² = F = -  k x - b v = - k x - b dx/dt    --- (1)

Let us assume that the solution is in the form of  x = A₀ e^{p t } * Sin (wt + B).  This derivation and assumption is explained in the differential equations lessons.  A linear homogeneous differential equation has a solution in the form of exponential and sine wave product.  we need to find w and p.

   x' =  dx/dt = A₀ e^{p t} [ w Cos (wt+B) + p Sin (wt+B) ]
   x" = A₀ e^{p t} [ - w² Sin(wt+B) + pw Cos (wt+B) + pw Cos (wt+B) + p² Sin(pt+B) ]
       = A₀ e^{p t} [ (p² - w²) Sin(wt+B) + 2 pw Cos (wt+B) ]
 
Substituting in eq (1) we get:
   m e^{p t} [ (p² - w²) Sin(wt+B) + 2 pw Cos (wt+B) ]
       =  - k e^{p t} Sin(wt+B) - b e^{p t} [ w Cos (wt+B) + p Sin (wt+B) ]

   [ m (p² - w²) + k + b p ] Sin(wt+B) + (b + 2pm) w Cos(wt+B) = 0

Since the above is true for all x and t,  and Sine and Cosine are independent and orthogonal functions,  the coefficients must be 0 for the above to be true.
           p = -b/2m 
          m b²/4m²  - mw² + k -b²/2m = 0       =>   w² =  k/m -  b²/4m²
          w = √(w₀² - b²/4m²)     where  w₀ = √(k/m)
  
    so we get   x = A₀ e^{-b t/2m} * Sin (w t + B)              ---- (2)

We apply the initial boundary conditions:
     At t = 0,    x = A        =>    A =   A₀  Sin B     =>  ∠B =  Sin-1 A/A0.
    also,  v = dx/dt = v₀  =>      A₀ [w cos B - b/2m * sin B] = v₀
              A/Sin B  * [w cos B - b/2m * Sin B] = v₀
              A w Cot B =  (v₀ + Ab/2m)      =>     Tan B = (A m w)/ (m v₀ + A b)
       =>   Sin B =  Amw / √[(Amw)² + (m v₀+Ab)²]
             A₀  =  A/SinB = √[ (Amw)²+ (m v₀+Ab)²]/mw = √[ A² + (v₀/w + Ab/mw)² ]

So we have found the constants in the eq (2).

===============================================

Another way of Derivation using linear homogeneous differential equations of 2nd order:

    m d² x / dt² = Force on the body  = - k x - b v = - k x - b dx/dt    --- (1)
                       m x" + b x' + k x = 0

  The auxiliary equation for this is:     m r² + b r + k  = 0
      r₁ = [ -b/2m + root(b2/4m2 - k/m) ]   and   r₂ = [ -b/2m - root(b2/4m2 - k/m) ]
   
Here b is very small.   b2 << 4mk.  so the solutions are imaginary and are:

   r₁ =   g + i h   and  r₂ =  g - i h  ,   
                 where   g = -b/2m   and   h = √(k/m - b2/4m²)      --- (3)

we know that e^{(g + i h)t} = e^{g t} [ Cos ht + Sin ht ]

Here  cos h and sin h are orthogonal independent solutions.   So the general solution of differential equation of motion is:

        x = A₀ e^{gt} [ c Cos ht + d Sin ht ]  = A₀ e^{gt} Cos (ht + Q)

We apply the initial boundary conditions for deciding constants c and d.
    at  t = 0 ,   x = A        =>     A =  A₀ Cos Q
    at  t = 0,   x' = v = v₀  =>  A₀ [g Cos(ht+Q) - h Sin (ht+Q)] = v₀
           =>  A g - A h Tan Q = v₀   =>   Tan Q = (A g - v₀) / (A h)

      Then Cos Q =  A h /√[ A²h² + (A g - v₀)²]
                    A₀ =  √[ A² + (A g/h - v₀/h)²]      where  g and h are given in  (3)

 Thus we have found the equation of motion for displacement of SHM with a small damping factor b.
          x =  A0 e^{gt} Cos (ht + Q)        where  Q, A0 and h are found as above.
            A₀ =  √[ A² + (A g/h - v₀/h)²]
           Tan Q = (A g - v₀) / (A h)
           g = -b/2m        h = root(k/m - b²/4m²)         w = √(w₀² - g²)
           w₀ = natural frequency of the system with out damping = √(k/m)
1 5 1
click on thanks button above pls
select best answr pls