# Assume that electron in he ion is excited to the second orbital(n=2) calculate the following: the radius of the orbit,the velocity of the electron,the potential energy of the electron, the kinetic energy of the electron

1
by Yasoorvaakan

## Answers

2015-11-12T23:05:20+05:30

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Bohr's radius for the nth Orbit:  (n = principal quantum number)

Let
R = Bohr' radius for an atom of atomic number Z,
n = orbit number = principal quantum number  =   2
h = Planck's constant = 6.626 * 10
⁻³⁴ units
K = 1/(4πε
₀) = 9 * 10⁹ N-m²/C²  = Coulomb's constant
Z = 2  for Helium
m = mass of an electron = 9.1 * 10
³¹ kg
e = charge on the electron = 1.602 * 10
⁻¹⁹ C

1) centripetal force = electrostatic attraction between an electron and protons.
m v² / R  =  K (Z*e) * e / R²
=> v² = K Z e² / (m R)      --- (1)

2) Angular momentum = m v R = n h / 2π          (integral multiple of  h/2π)
=>  v = n h / (2 π m R)    --- (2)

3)  from (1) and (2):
n² h² / (4π² m² R²) = K Z e² / (m R)
=> R = n² h² / (4π² m K e² Z)      --- (3)

4)  So speed of electron (linear along the circular orbit)  by substituting value of R,
=>  v = (2 π  K e² Z) / (n h)

5)  Potential energy of the electron:
We ignore gravitational potential energy here.
PE = - K * Z * e * e / R  = - K Z e² / R  --- (4)
= - [4 π² m K² Z² e⁴ ] / (n² h²)

6) Kinetic energy of electron:
=> 1/2 * m * v² = (π m * R e² Z ) / (n h)
= [ 2 π² K² Z² e⁴ m ] / (n² h²)  =  - P.E / 2
=========================================
7)  The total energy of the electron :  (a simple formula)
KE + PE =  P.E / 2
Total energy = - 13.6 Z² / n²  eV = - 13.6 e V

So K.E. = 13.6 e V        and  P.E. = - 27.2 e V

Bohr's Radius of Hydrogen atom R for n = 1 is  0.529 °A
So for Helium in n =2,    R =  n² * 0.529 / Z  °A  = 1.058  °A

Speed of electron in Hydrogen (n = 1) is  v = 2,185 km/s      (≈ speed of light / 137)
so for Helium in n = 2,  v =  z * 2,185 / n   km/s
So  v =  2, 185  km/s

click on thanks button above;; select best answer