Answers

The Brainliest Answer!
2015-12-21T07:15:35+05:30
Let the cost price of 1st basket be Rs `x` and 2hd basket be Rs `y`
GIven x +y = 1440 -------------------(1)
10% gain on 1st basket the price will be = x + (10/100) of x
                                                                 = x+10x/100
                                                                 = x + x/10
                                                                 = (10x +x)/10
                                                                 = 11x /10
20% gain on 2nd basket the price will be = y +(20/100) of y
                                                                  = y + 1/5 of y
                                                                  = y + y/5 
                                                                  = (5y +y) /5
                                                                  = 6y/5
Given that the total price = 1656 
⇒11x/10 + 6y/5 = 1656
 ⇒(11x + 12y)/10 = 1656
⇒ 11x +12y = 1656 ×10 
⇒11x + 12y =16560   --------------------------(2)
Subtracting 1 from 2
11x +12y = 16560
x + y = 1440

⇒11x +12y = 16560
 11(x + y = 1440)
  
⇒11x + 12y = 16560 
   11x + 11y =  15840
  -      -             -              [ signs changed for subtraction]
 0    +  y =  720
∴Cost of 2nd basket = y = Rs 720
Substitute y in eq 1, we get
x + y = 1440
⇒x + 720  = 1440
⇒x = 1440 - 720
∴x = 720
∴Cost of the 1st basket = Rs 720 and 2nd basket is also Rs720 
1 5 1
2015-12-22T12:27:08+05:30
Let the 1st basket be cost price be 100x ( for some x )
=> Cost price of 2nd basket = 1440 - 100x

He sold 1st at gain of 10% => gain (1st) = 10% of 100x = 10x

He sold 2nd at a gain of 20% => gain (2nd) =
20% of ( 1440-100x) = 1/5 * (1440 - 100x ) = 288 - 20x

Net profit = 10x + 288 - 20x = 288 - 10x

But he made net profit = 1656 - 1440 = 216

=> 288 - 10x = 216 => x = ( 288 - 216 ) / 10 = 7.2

So cost price of 1st = 100x = 100 * 7.2 = ₹ 720
Cost price of 2nd = 1440 - 720 = ₹ 720



0