Answers

2014-07-31T16:29:05+05:30
\lim\limits_{x\to\frac{\pi}{4}}\frac{1-tanx}{1-\sqrt2sinx}=\left[\frac{0}{0}\right]\\\\Use\ the\ l'Hopital's\ rule:\\\\f(x)=1-tanx\to f'(x)=-\frac{1}{cos^2x}\\\\g(x)=1-\sqrt2sinx\to g'(x)=-\sqrt2cosx\\\\\lim\limits_{x\to\frac{\pi}{4}}\frac{1-tanx}{1-\sqrt2sinx}=\lim\limits_{x\to\frac{\pi}{4}}\frac{-\frac{1}{cos^2x}}{-\sqrt2cosx}=\lim\limits_{x\to\frac{\pi}{4}}\frac{1}{\sqrt2cos^3x}=\frac{1}{\sqrt2\cdot\left(\frac{\sqrt2}{2}\right)^3}

=\frac{1}{\sqrt2\cdot\frac{2\sqrt2}{8}}=\frac{1}{\frac{4}{8}}=\frac{1}{\frac{1}{2}}=2

============================================================

The\ l'Hospital's\ rule:\\\\if\\\lim\limits_{x\to a}f(x)=\lim\limits_{x\to a}g(x)=0\ or\pm\infty\ and\ \lim\limits_{x\to a}\frac{f'(x)}{g'(x)}\ exist\ where\ g'(x)\neq0\\\\then\\\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f'(x)}{g'(x)}
0
The Brainliest Answer!
2014-07-31T18:53:14+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Let x = π/4 + Δx    So our limit is as Δx -> 0
tan π/4 = 1  sin 45 = 1/√2
numerator =  1 - tan (π/4 + Δx )  =  1  - [ (tan 45 + tan Δx)/(1 - tan 45  tan Δx) ]
             = 1 -  [ (1 + tan Δx)/ (1-tan Δx) ]  =  - 2  tan Δx  / (1 - tan Δx)
Numerator / Δx = - 2 ( tan Δx  / Δx ) * 1/(1 - tan Δx)
Lim        Numerator / Δx  =  - 2       as Lim (tan Δx / Δx) = 1  and  Lim tan Δx = 0
Δx->0                                                Δx->0                              Δx->0
Denom = 1 - √2 sin (45+Δx) = 1 - Cos Δx - Sin Δx 
           = 2 sin² Δx/2 - 2 Sin Δx/2 Cos Δx/2  = 2 Sin Δx/2 [ sin Δx/2 - cos Δx/2]
Denom / Δx  = ( Sin Δx/2  / Δx/2)    [ sin Δx/2  - cos Δx/2 ]
Lim          Denom / Δx    =  -1        as Lim sin Δx/2  / Δx/2  = 1
Δx -> 0                                             Δx/2 -> 0
               Lim  Δx/2 ->0  of Sin Δx/2 =0        and for cos ,  it is 1.
So numerator / Denominator as Lim Δx->0  ,  -2 / -1  = 2

1 5 1
Thanks a lot... I needed this badly :)