Answers

2016-03-16T15:16:03+05:30
Given:          ABC is a triangle right angled at B and AB=BC
                      DEFB is square
 To prove:      AE=EC

   Proof:     
                   Since DEFB is a square
                    
    BD=BF⇒eq.1
                         and....
                         AB=BC(given)⇒eq.2
By subtracting eq.2 with eq.1, we get
AB-BD=BC-BF
AD=FD⇒eq.3

In ΔADE and ΔEFC
∠EAD=∠ECF     (∵ AB=AC)
 AF=FC              (from eq.3)
 ∠ADE=∠EFC    (adjoining angles of the square)
∴   By ASA congruency rule
ΔEDA is congruent to ΔEFC
by cpct
AE=EC
Hence proved              

0
Hope it really helped you
ad =fdequation 3 ?
OH...SRY THYAT WAS FC
okay?