Answers

  • Brainly User
2016-03-26T21:29:17+05:30
fleming's left hand rule


It is found that whenever an current carrying conductor is placed inside a magnetic field, a force acts on the conductor, in a direction perpendicular to both the directions of the current and the magnetic field. In the figure it is shown that, a portion of a conductor of length L placed vertically in a uniform horizontal magnetic field strength H, produced by two magnetic poles N and S. If i is the current flowing through this conductor, the magnitude of the force acts on the conductor is,

F = BiL

right hand rule

As per Faraday's law of electromagnetic induction, whenever a conductor moves inside a magnetic field, there will be an induced current in it. If this conductor gets forcefully moved inside the magnetic field, there will be a relation between the direction of applied force, magnetic field and the current. This relation among these three directions is determined by Fleming Right Hand rule

This rule states "Hold out the right hand with the first finger, second finger and thumb at right angle to each other. If forefinger represents the direction of the line of force, the thumb points in the direction of motion or applied force, then second finger points in the direction of the induced current.

0