## Answers

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.

CosA +sinA = √2cosA

squaring

⇒(cosA + sin A)² = (√2cosA)²

⇒cos²A + sin²A + 2sinAcosA = 2cos²A

⇒1 - sin²A + 1 - cos²A + 2sinAcosA = 2cos²A

⇒2 - 2cos²A = cos²A + sin²A - 2sinAcosA

⇒2(1 - cos²A)= (cosA - sinA)²

⇒ cosA - sinA = √[2sin²A]

⇒cosA-sinA = √2sinA

hence proved

squaring

⇒(cosA + sin A)² = (√2cosA)²

⇒cos²A + sin²A + 2sinAcosA = 2cos²A

⇒1 - sin²A + 1 - cos²A + 2sinAcosA = 2cos²A

⇒2 - 2cos²A = cos²A + sin²A - 2sinAcosA

⇒2(1 - cos²A)= (cosA - sinA)²

⇒ cosA - sinA = √[2sin²A]

⇒cosA-sinA = √2sinA

hence proved

squaring on both sides we get

(cos A + sin A)² = (√2cos A)²

it is in the form of (a+b)^2

formula for (a+b)^2=a^2+ab+b^2

by comparing here we have a=cos A and b=sin A

cos²A + sin²A + 2sinAcosA = 2cos²A

we know that

sin^2A+cos^2 A=1

from this we can write

sin^2 A=1-cos^2 A

and cos^2 A=1-sin^2 A

1 - sin²A + 1 - cos²A + 2 sinAcosA = 2 cos²A

adding like terms and sin^2 A+cos^2 A -2 sinA cosA -2 cos^2 A on both sides

2 - 2 cos²A = cos²A + sin²A - 2 sinAcosA

taking 2 as common in left side of the equation

2(1 - cos²A)= (cos A - sin A)²

cos A - sin A = √[2 sin²A]

cos A-sin A = √2 sin A

hence it is proved

tanA = sinA/cosA

cotA = cosA/sinA

1 + cot^2A = cosec^2A

tan^2A + 1 = sec^2A

cosecA = 1/sinA

secA = 1/cosA

cotA = 1/tanA

(Only use the above identities to prove the question)