Answers

2016-05-07T12:02:49+05:30

Let, f(x)=x3−13x2+32x+20f(x)=x3−13x2+32x+20

f(x)=x(x2−13x+30)+2x+20f(x)=x(x2−13x+30)+2x+20

f(x)=x(x−3)(x−10)+2x+20f(x)=x(x−3)(x−10)+2x+20

f(−1)<0f(−1)<0f(0)>0f(0)>0, which shows there is a root between x=−1x=−1 and x=0x=0

f(4)>0f(4)>0f(5)<0f(5)<0, which shows there is a root between x=4x=4 and x=5x=5

f(9)<0f(9)<0f(10)>0f(10)>0, which shows there is a root between x=9x=9 and x=10


0