#
This ques is frm trigonometry

prove that cotθ-1+cosecθ ÷ cotθ+1-cosecθ = 1÷cosecθ-cotθ

1
by Deekshita

Log in to add a comment

prove that cotθ-1+cosecθ ÷ cotθ+1-cosecθ = 1÷cosecθ-cotθ

by Deekshita

Log in to add a comment

The Brainliest Answer!

(cotФ-1+cosecФ)/(cotФ+1-cosecФ)

(cosФ-sinФ+1)/(cosФ+sinФ-1)

(cosФ+1-sinФ)(cosФ+1+sinФ)/{(cosФ+sinФ-1)(cosФ+sinФ+1)}

{(cosФ+1)²-sin²Ф}/{(cosФ+sinФ)²-1²}

{cos²Ф+1+2cosФ-sin²Ф}/{cos²Ф+sin²Ф+2sinФcosФ+1}

{cos²Ф+cos²Ф+sin²Ф+2cosФ-sin²Ф}/{1+2sinФcosФ+1}

{2cos²Ф+2cosФ}/{2+2sinФcosФ}

(1+cosФ)/sinФ

(1+cosФ)(1-cosФ)/{(1-cosФ)sinФ}

(1-cos²Ф)/{(1-cosФ)sinФ}

sin²Ф/{(1-cosФ)sinФ}

sinФ/(1-cosФ)

1/(cosecФ-cotФ)

hence proved