Answers

2014-08-23T20:59:52+05:30
We know that tanФ=sinФ/cosФ and cotФ=1/tanФ.
So we need to prove that (tanФ-cotФ)/sinФcosФ=tan²Ф-cot²Ф
                       we can see that (tanФ-cotФ)/sinФcosФ=(tanФ-cotФ)(tanФ+cotФ)
So what we really need to prove is that 1/sinФcosФ=(tanФ+cotФ)
Now we know that (tanФ+cotФ)=sinФ/cosФ + cosФ/sinФ
           or,(sin²Ф+cos²Ф)/(sinФcosФ)=(tanФ+cotФ)
[We know the fact that sin²Ф+cos²Ф=1] hence we have proved that 1/sinФcosФ=(tanФ+cotФ).Thus the problem is solved.
0
little bit
What havent u understood?
now i got it
thnkz yaar
:D no prob
2014-08-24T01:13:04+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
 \frac{tan\ \alpha - cot\ \alpha }{sin\ \alpha \ cos\ \alpha } \\ \\ 
\frac{\frac{sin\ \alpha }{cos\ \alpha } - \frac{cos\ \alpha }{sin\ \alpha } }{sin\ \alpha \ cos\ \alpha } \\ \\ 
\frac{sin^{2} \alpha - cos^{2} \alpha }{sin^{2} \alpha \ cos^{2} \alpha } \\ \\ 
\frac{1}{cos^{2} \alpha } - \frac{1}{sin^{2} \alpha } \\ \\ 
sec^{2}\ \alpha - cosec^{2}\ \alpha \\ \\ 
R H S : \ \ tan^{2}\ \alpha - cot^{2}\ \alpha = (sec^{2}\ \alpha - 1) - (cosec^{2}\ \alpha - 1) \\ \\ 
So\ the\ answer. \\
1 5 1