Answers

2014-08-31T18:53:14+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
DIstance between two points A(x1, y1) and B(x2, y2) is equal to

    \sqrt{(x2 - x1)^2 + (y2 - y1)^2} \\ \\ \sqrt{(-3 - 4)^2 + (0-0)^2} \\ \\ \sqrt{(-7)^2} \\ \\ \sqrt{49} = 7 \\ \\

LOOK at the diagram for better understanding

2)  

 \frac{12 * 4 * \sqrt{15}}{8 * 3 \sqrt{3}} \\ \\ \frac{12 * 4 * \sqrt{5*3}}{8 * \sqrt{3}} \\ \\ \frac{6 * 2 * 4 * \sqrt{5} * \sqrt{3}}{2 * 4 * \sqrt{3}} \\ \\ 6 * \sqrt{5} \\




0
The Brainliest Answer!
2014-09-01T16:04:40+05:30
I) 
The distance between two points (x_1, y_1) and  (x_2, y_2) is

 \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 }

A( (4,0) and B(-3,0)

AB = \sqrt{(-3-4)^2 + (0-0)^2 }

= \sqrt{(-7)^2 }

AB = 7

ii) divide 12* 4 root15 by 8*3 root 3

 \frac{12*4 \sqrt{15} }{8*3 \sqrt{3} }

 \frac{48 \sqrt{15} }{24 \sqrt{3} }

 \frac{2\sqrt{3}\sqrt{5} }{\sqrt{3} }

2 \sqrt{5}
2 5 2