Answers

2014-10-03T08:55:08+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Let the three sides of the triangle be
          base = b
        height = h
hypotenuse = H

b² + h² = H²
⇒(b+h)² - 2bh = H²

Area = 150
⇒(1/2)bh = 150
⇒bh = 300
Perimeter = 60
⇒ b + h + H  = 60
⇒b + h = 60-H
 
Thus (b+h)² - 2bh = H²
⇒(60-H)² -2×300 = H²
⇒ 3600 + H² - 2×60×H - 2×300 = H²
⇒3600 - 120H -600 = 0
⇒ -120H + 3000 = 0
⇒120H = 3000
⇒ H = 3000/120 = 25cm

b+h = 60-25 = 35
⇒300/h + h = 35
⇒h² + 300 = 35h
⇒h² -35h + 300 = 0
⇒ h² -15h -20h +300 = 0
⇒(h-15)(h-20) = 0
⇒h = 15 or 20
⇒b = 20 or 15

Thus Three sides are (15,20,25)


0
b² + p² = H²
⇒(b+p)² - 2pb = H²
Area = 150
⇒(1/2)bp = 150
⇒bp = 300
Perimeter = 60
⇒ b + p + H = 60
⇒b + p = 60-H
Thus (b+h)² - 2bh = H²
⇒(60-H)² -2×300 = H²
⇒ 3600 + H² - 2×60×H - 2×300 = H²
⇒3600 - 120H -600 = 0
⇒ -120H + 3000 = 0
⇒120H = 3000
⇒ H = 3000/120 = 25cm

b+p = 60-25 = 35
⇒300/p + p = 35
⇒p² + 300 = 35p
⇒p² -35p + 300 = 0
⇒ p² -15p -20p +300 = 0
⇒(p-15)(p-20) = 0
⇒p = 15 or 20
⇒b = 20 or 15
What do you want to say?? And why are you (copy-paste)ing?
2014-10-03T12:01:13+05:30
Let a right triangle,
in which   , perpendicular = p
                   base = b    , and diagonal  = h
A/q,
            from pythagoras theorem .
p²+b² =  h²  --------------------------(1) 

Area of right tringle  = 1/2×b.p
1/2×b.p = 150
or ,   bp = 300 -------------------(2)
&
           perimeter = p+b+h 

or,            p+b+h = 60  
or,                p+b = 60-h -------------------(3)
Now squaring both side of the equation (3).,
           (p+b)² = (60-h)²
or,        p²+b²+2bp   = 60²+h²-2×60.h

or,        h²+2(300) = 3600+h²-120h

or,        120h = 3600-600 = 3000
 or,             h = 3000/120 = 25 cm

so from eqn (3) ,p+b = 60-25  = 35 ------------(4)
We know that,      (p+b)²-(p-b)² = 4.pb
or,           (35)²+(p-b)² = 4 (300)                       {from eqns (3) & (2)
or,            (p-b)² = 1200 - 1225 = 25
 or,            p-b = (+-) 5    ------(5)
On adding the Eqns (4) & (5)
               2p = 35(+-) 5
so, either          p = (35+5)/2 = 20 cm   ,then b = 35-20 = 15 cm
         or,        p = (35-5)/2 = 15 cm , then b =  35-15 = 20 cm
Therefore sides of the right triangle are 25 cm, 20 cm and 15 cm .
0