Answers

2014-10-15T01:55:50+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
I am not sure if the angle 120° is the angle θ of the string with its initial position. or, θ = 60°.   please substitute accordingly in the formula.  It is not clear to me from the last sentence of the question.

Total energy = PE + KE when θ=0° initial vetical position.
                  = 0 + 1/2 m (√6gl)² = 1/2 m 6 gl = 3 mgl

Total energy when the string makes angle θ with initial position = PE + KE
                = m g l (1 - cos θ) + 1/2 m v²

Energy is conserved.

          1/2 m v² = 3 mg l - mgl (1- cos θ)  = 2 mg l + mgl cos θ

                   v²/l = 4 g + 2 g cos θ
     
Tension in the string T = centripetal force + component of weight pointing away from the string radially.
                  = m v² / l + m g cos θ
                  = (4 m g + 2 mg cos θ ) + mg cos θ

         T =  mg ( 4 + 3 cos θ)

If θ = 120°, then   T = mg ( 4 + 3 cos 120 ) = 2.5 mg
If θ = 60°      then   T = mg ( 4 + 3/2 ) = 5.5 mg


1 5 1