The Brainliest Answer!

This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
We select the left side AC circuit.
We write the potential difference across each network element and sum them.

For\ capacitor\ V_C=\frac{q}{C},\ \ For\ Inductor\ induced\ voltage=L\ \frac{di}{dt},\ So\\\\L\ \frac{di}{dt}+i\ R+\frac{q}{C}=v_{in},\ \ \ v_{out}=R\ i\\\\As\ i=\frac{dq}{dt},\ \frac{di}{dt}=\frac{d^2q}{dt^2}\\\\L\ \frac{d^2q}{dt^2}+R\ \frac{dq}{dt}+\frac{q}{C}=v_{in}=v_mSin(\omega\ t),\ \ Let\ us\ say\\\\

Let\ q=q_mSin(\omega\ t+\theta),\ \ then\ \ \frac{dq}{dt}=q_m\omega\ Cos(\omega\ t+\theta)\\\\\frac{d^2q}{dt^2}=-q_m\omega^2Sin(\omega\ t+\theta)\\\\ Lets\ say\ X_L=impedance\ of\ Inductor=\omega\ L\\and\ X_C=impedance\ of\ capacitance=\frac{1}{\omega\ C}\\\\Hence\ v_m\ Sin(\omega\ t)=\\.\ \ \ \ q_m\ \omega(X_C-X_L)Sin(\omega\ t+\theta)+q_m\ R\ \omega\  Cos(\omega\ t+\theta)\\\\=q_m\ \omega\ [ (X_C-X_L)Sin(\omega\ t+\theta)+R\ Cos(\omega\ t+\theta) ]\\\\Let\ Cos\phi=\frac{R}{Z},\ Sin\phi=\frac{X_C-X_L}{Z}

and,\ \ Z=\sqrt{R^2+(X_L-X_C)^2},\ \ then\ finally\\\\v_m Sin(\omega\ t)=q_m\omega Z\ Cos(\omega\ t+\theta-\phi)\\\\\. \ \ \ =>v_m=q_m\omega Z,\ \ \ \phi-\theta=\pi/2

i = v_m \omega\ Cos(\omega\ t+\theta)=v_m\ \omega\ Sin(\omega\ t+\phi)\\\\i_m=\frac{v_m}{Z}=\frac{v_m}{\sqrt{R^2+(X_L-X_C)^2}}=\frac{v_m}{\sqrt{R^2+(\omega L-\frac{1}{\omega C})^2}}\\\\v_{out}=i\ R=\frac{R\ v_m}{\sqrt{R^2+(\omega L-\frac{1}{\omega C})^2}}Sin(\omega\ t+\phi),\\\\tan\phi=\frac{X_C-X_L}{R}=\frac{1-\omega^2LC}{\omega RC}\\\\

Z = impedance in the circuit is minimum when
X_L=X_C,\ \ \omega_o L=\frac{1}{\omega_o C},\ \ \omega_o=\frac{1}{\sqrt{LC}}\\

Resonance occurs at this frequency ω₀.  Then the impedance Z = R and the output voltage 

|v_{out} | = |v_m|, \ \ Power\ thru\ Load\ R\ is\ Maximum.\\

For other values of ω, Z increases and so v_out decreases.  Hence the circuit acts as a band pass filter.  

The band width can be obtained by finding the ω₁ and ω₂, when the power is 1/2 the maximum and when v_out = v_m /√2 .

So,\ \sqrt{R^2+(X_L-X_C)^2}=\sqrt{2R^2}\\\\X_L-X_C=R\\\\\omega\ L-\frac{1}{\omega C}=R\\\\\omega^2LC-\omega\ RC-1=0\\\\Bandwidth=\omega_1-\omega_2=\Delta\omega=\frac{\sqrt{R^2C^2+4LC}}{LC}=\frac{R}{L}\sqrt{1+\frac{4L}{R^2C}}\\\\we\ choose\ \frac{\Delta\omega}{\omega_0}<<1

Then it works as a good band pass filter , 

2 5 2