Answers

  • Brainly User
2014-12-12T21:38:04+05:30
Consider the centre of circle to be O, ends of chord as A, B and their mid-point as M.
We have, radius, r = 5√2 cm and chord length, l = 10 cm.
Now you can observe, ∆OAM & ∆OBM are isosceles & right angled at M.
Here, angle AOM = angle BOM = 45°, then area of ∆ AOB = 25 cm²
and the area of sector AOB = ¼(circle area) = (12.5)π cm², since angle AOB = 90°.
Then area of segments are 50(π-2)/4 and 50(3π+2)/4.
0
2014-12-12T21:58:12+05:30
we have r=√50cm
        cord=10cm
 we know  of the segment make angle Ф at centre
       we have sinФ/2=5/√50=45 degree
                                     ⇒ Ф=90
   Area of segment=(Фπ/180-sinФ)r²/2
                           =(90π/180-sin90)50/2
                           =(.5π-1)25
                           =14.26cm²
0
Actually, sin45°=1/√2
i agrre answer is 14.26cm2