Answers

2014-04-18T12:45:49+05:30
50^{100}*100^{50}=7.8886090522101180541172856528279*10^{169}
Calculation:
50^{100}*100^{50}=50^{100}*(2*50)^{50}=50^{150}*2^{50}= \frac{50^{150}2^{150}}{2^{100}}
= \frac{100^{150}}{2^{100}}= \frac{10^{300}}{2^{100}}=(1+1)^{-100}10^{300}
then by using binomial theorem expansion
=(1-100+ \frac{100(100+1)}{2!}-\frac{100(100+1)(100+2)}{3!}+\frac{100(100+1)(100+2)(100+3)}{4!}... )*10^{300}
=7.8886090522101180541172856528279*10^{+169}

0