Answers

2015-03-06T17:47:31+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
for 2:
by using the formula s = a+(n-1)d
where s is the last term, a is the 1st term, d is the common difference
the first and last terms that are divisible by 2 between 100 to 200 without including 100 and 200 are 102 (51 times)  and 198 (99 times)
and the common difference is 2 since they are the multiples of 2
so, a=102, l /s=198, d=2
by substituiting them in formula we get
198=102+(n-1)2
n-1=198-102/2
n-1=96/2
n-1=48
n=48+1
n=49
so the number of terms that are divisible by 2 is 49 terms
S49 = 49/2 (102+198)
       = 49/2×300
       = 49×150
       = 7350
there fore the sum of the  49 terms is 7350

for 3:
by using the formula s = a+(n-1)d
where s is the last term, a is the 1st term, d is the common difference
the first and last terms that are divisible by 3 between 100 to 200 without including 100 and 200 are 102 (34 times) and 198 (66 times)
and the common difference is 3 since they are the multiples of 3
so, a=102, s=198, d=3
by substituiting them in formula we get
198=102+(n-1)3
n-1=198-102/3
n-1=96/3
n-1=32
n=32+1
n=33
so the number of terms that are divisible by 3 is 33 terms
Sn = n/2(a+l)
S49 = 33/2 (102+198)
       = 33/2×300
       = 33×150
       = 4950
there fore the sum of the 33 terms is 4950

4 4 4
plz mark it as best n click at thanks hope it helps u
as ur wish
plz clck at thanks if it helps u
That was really helpful
2015-03-06T17:47:52+05:30
F=102
D=2
XN=198
n=number of terms
n=\frac{ x_{n}-f }{d} +1
=198-102/2+1=49
SN= \frac{n}{2} (F+ x_{n} )
= \frac{49}{2} (102+198)=7350

f=102
d=3
xn=198
n=\frac{ x_{n}-f }{d} +1=33
 sn= \frac{n}{2} (F+ x_{n} )
   =33/2(102+198)=4950


0