Answers

2015-03-23T17:08:27+05:30

De Moivre's formula reads(cosθ+isinθ)n=cos(nθ)+isin(nθ)Of course this identity implies the real part should be also equality. That iscos(nθ)=R{(cosθ+isinθ)n}Hence we havecos(3θ)=R{cos3θ+3icos2θsinθ−3cosθsin2θ−isin3θ}=cos3θ−3cosθsin2θ
0