# Llok at the attachement and solve them

1
by rajusetu

2015-04-02T22:07:28+05:30

### This Is a Certified Answer

Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.

=====
given  x³ + y³ + z³ = 3 xyz

(x+y+z)³
= (x+y)³ + z³ + 3 (x+y)z (x+y+z)
= (x³ + y³ + z³) + 3 x²y + 3 xy² + 3 x²z + 6 xyz + 3 xz² + 3 y²z + 3 yz²

replace the 6xyz term with 2 x³ + 2 y³ + 2 z³.  Then rearrange the terms.

= 3 x³ + 3 y³ + 3 z³ + 3 x²y + 3 xy² + 3 x²z + 3 xz² + 3 y²z + 3 yz²
Bring terms with x² together.  those with y² together.
= 3 x² (x+y+z) + 3 y² (y + x +z) + 3 z² (z + x +y)
= 3 (x + y + z) (x² + y² + z²)

x+y+z ≠ 0  as x,y,z>0 as log x, log y, log z exist.

hence,   (x + y + z)² = 3 (x² + y² + z²)      ---- (2)

simplify the above expression by expansion to get:
x² + y² + z² =  xy + yz + xz
= (x+y+z)² / 3

=====================
19)  Here the logarithms are to the base 10.

Given number is expressed as    N = x * 10^y   like:   1.5015 * 10^5.

N = number.         Log               Characteristic                  Mantissa
N = x * 10^y       Log  N            Floor[ Log  N ]           Log N  -  characteristic
y + Log  x                 y                           Log  x

Given, N = 0.00203 = 2.03 * 10^-3,     and     Log  N  = -3 + log  2.03

So characteristic is the exponent of 10:   -3.      Mantissa = Log  2.03

====================
20)
N = Log 3 = 0.4771  = 4.771 * 10^-1
Hence :    characteristic is   -1      and the mantissa is   Log  4.771
=======================
21)

Log x =  2 Log a  + 3 Log b - 4 Log c
=  Log a² + log b³ - log c⁴
=  Log  [ a² b³ / c⁴ ]
so  x = a² b³ / c⁴
===================
22)
Here all the logarithms are to the base 1/2.  Since all terms are for the same base, we dont need to write it.

Log x = Log  4 + Log 3 - Log 2
= Log  (4 * 3 / 2)
= Log  6
x = 6

i could not do that. perhaps, log x+log y + log z = log(x^3+y^3+z^3) - log 3
If this is not the answer, then check for a formula with x^3+y^3+z^3 and 3 xyz .. and then use that.