Answers

2015-04-14T23:38:06+05:30

This Is a Certified Answer

×
Certified answers contain reliable, trustworthy information vouched for by a hand-picked team of experts. Brainly has millions of high quality answers, all of them carefully moderated by our most trusted community members, but certified answers are the finest of the finest.
Logarithms

x^3=7\\\\Log_7\ x^3=Log_7\ 7=1\\\\3\ Log_7\ x=1,\ \ Log_7\ x=1/3\\\\let\ y=Log_{2401}\ x\\\\2401^y=x\\\\. [\ (49)^2\ ]^y=x\\\\Log_7\ (49)^{2y}=Log_7\ x\\\\2y\ Log_7\ 49=Log_7\ x\\\\2y\ *\ 2=1/3,\ calculated\ above\\\\y=1/12

===============
(2x + 4)²  =  1 +  x² + 9 ???
question is  not clear ??
======
3.
       √(x² - y² + 2)  =  ?  the taylor series ?

  expansion about point  (x0, y0) = (0, 0).

F= \sqrt{x^2-y^2+2}\\\\\frac{dF}{dx}=\frac{2x}{2\sqrt{x^2-y^2+2}},\ \ at\ (0,0):\ 0\\\\\frac{dF}{dy}=\frac{-2y}{2\sqrt{x^2-y^2+2}},\ \ value\ at\ (0,0):\ 0\\\\\frac{d^2F}{dx\ dy}=\frac{xy}{(x^2-y^2+2)^\frac{3}{2}},\ \ va;ue\ at\ (0,0),\ =0\\\\\frac{d^2F}{dx^2}=\frac{-2x^2}{2(x^2-y^2+2)^\frac{3}{2}}+\frac{1}{\sqrt{x^2-y^2+2}}=\frac{2-y^2}{(x^2-y^2+2)^\frac{3}{2}},\ value\ at\ (0,0)\ :\frac{1}{\sqrt2}\\

\frac{d^2F}{dy^2}=\frac{y^2}{(x^2-y^2+2)^\frac{3}{2}}-\frac{1}{\sqrt{x^2-y^2+2}}=\frac{2y^2-x^2-2}{(x^2-y^2+2)^\frac{3}{2}},\ \ value\ at\ (0,0)\ :\ \frac{-1}{\sqrt2}



1 5 1
which class is the problem for expansion of the given expression to the power half ?
for the taylor series expansion, the formula needs to be still done. its is not complete yet.
Binomial theorem